1. Calculate 2 A , where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5
\end{array}\right]
$$

2. Find $A B$ and $B A$,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

3. Find $A B, B A, A+B, A-B, 4 A, 6 B$

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], B=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 6 \\
7 & 2 & 5
\end{array}\right]
$$

4. Check that $X Y=Y X$ or not, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], Y=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

5. Show that the equations $X I_{2}=X$ and $I_{2} X=X$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

6. Show that the equation $\mathrm{OX}=\mathrm{O}$ and $\mathrm{XO}=\mathrm{O}$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad O=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

7. Show that $X(Y+Z)=X Y+X Z$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], Y=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], Z=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

8. Show that $(X Y) Z=X(Y Z)$, where

$$
X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], Y=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], Z=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

9. Find Inverse of matrix A and prove that $A A^{-1}=A^{-1} A=I_{2}$, where

$$
A=\left[\begin{array}{cc}
5 & 2 \\
-7 & -3
\end{array}\right]
$$

10. Find inverse of matrix B and prove that $B^{-1}=B^{-1} B=I_{2}$

$$
B=\left[\begin{array}{cc}
-3 & 1 \\
5 & -2
\end{array}\right]
$$

11. Find inverse of matrix C and prove that $\mathrm{CC}^{-1}=\mathrm{C}^{-1} \mathrm{C}=\mathrm{I}_{2}$

$$
C=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

12. Find inverse of matrix D and prove that $\mathrm{DI}_{2}=\mathrm{I}_{2} \mathrm{D}=\mathrm{D}$

$$
D=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
$$

13. Find inverse of matrix E and prove that $\mathrm{EI}_{2}=\mathrm{I}_{2} \mathrm{E}=\mathrm{E}$

$$
E=\left[\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right]
$$

14. Prove that $X \& Y$ are inverse of each other, where

$$
X=\left[\begin{array}{cc}
1 & 5 \\
-3 & -6
\end{array}\right] \quad Y=\left[\begin{array}{ll}
-\frac{2}{3} & \frac{1}{3} \\
-\frac{5}{9} & \frac{1}{9}
\end{array}\right]
$$

15. Prove that $X \& Y$ are inverse of each other, where

$$
A=\left[\begin{array}{cc}
-8 & 3 \\
5 & -1
\end{array}\right] \quad B=\left[\begin{array}{cc}
\frac{1}{7} & \frac{3}{7} \\
\frac{5}{7} & \frac{8}{7}
\end{array}\right]
$$

16. Prove that $X \& Y$ are inverse of each other, where

$$
A=\left[\begin{array}{ll}
-3 & -4 \\
-6 & -5
\end{array}\right] \quad B=\left[\begin{array}{cc}
\frac{5}{9} & -\frac{4}{9} \\
-\frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

17.Find inverse of matrix X, where

$$
X=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]
$$

18. Find inverse of matrix X, where
$X=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$
19. Find inverse of matrix Y, where
$Y=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & -2 & -0 \\ 2 & 0 & -1\end{array}\right]$
20.Find inverse of matrix R, where

$$
R=\left[\begin{array}{lll}
2 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

21.Find inverse of matrix A, where

$$
A=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 4 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

22.Find inverse of matrix U, where
$U=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3\end{array}\right]$
23. Find inverse of matrix V, where
$V=\left[\begin{array}{lll}2 & 4 & 6 \\ 0 & 4 & 6 \\ 0 & 0 & 3\end{array}\right]$
24.Solve the given equations using matrix inverse method
(1) $3 x+8 y=5,4 x+11 y=7$
(2) $5 x+15 y+56 z=35,-4 x-11 y-41 z=-26,-x-3 y-11 z=-7$
(3) $2 x-17 y+11 z=0,-x+11 y-7 z=8,3 y-2 z=-2$
(4) $2 x+3 y+z=32,3 x+3 y+z=-27,2 x+4 y+1=-2$
(5) $x+2 y=4,3 x-5 y=1$
(6) $5 x+y=13,3 x+2 y=5$
(7) $3 x+2 y=-2, x+4 y=6$

